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Setup

Problem Setting
I Data set {x i , y i}

m
i=1 consisting of inputs x i ∈ X and targets

y i ∈ Y
I Inverse problem: x = Ay + η where y ∈ Rn is the unknown

signal of interest, A ∈ Rm×n denotes the forward operator
representing a physical measurement process, and η ∈ Rm is
modelling noise in the measurements

I Prediction function Φ : X → Y

Goal
A high-resolution alarm system in output-space that is post hoc,
efficient, easy to interpret and effective.



Method: Interval Neural Network Uncertainty I

Figure 1: Schematic INN overview



Method: Interval Neural Network Uncertainty II

For positive values of [x , x ](l), we can express the interval
propagation as

x (l+1) = %
(
min

{
W (l)

, 0
}

x (l) +max
{
W (l)

, 0
}

x (l) + b(l)
)

x (l+1) = %
(
max

{
W (l), 0

}
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W (l), 0

}
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)
These formulas can then be used in existing deep learning
frameworks to optimize the bounds of the interval parameters via
backpropagation and the following cost function:

L(Φ,Φ) =
m∑
i=1

max{y i −Φ(x i ), 0}2 +max{Φ(x i )− y i , 0}2

+β ·
(
Φ(x i )−Φ(x i )

)



Method: Interval Neural Network Uncertainty III

INN Perks
I Modular: Plug in a finished prediction function and get

uncertainty features on top without retraining
I Quick: INNs scale linearly in the number of prediction DNN

operations K with a constant factor of 2, in contrast to a
factor of T ≥ 10 for [1]

I Interpretable: Interval values and analytic coverage bounds1

P(Φ(x∗)− λβ < y∗ < Φ(x∗) + λβ |x∗) ≥ 1− 1
λ

I Effective: ?

1On the training distribution, see Section 3 of the paper



Experiments I

Failure Modes
I Adversarial Artifact Detection (AdvDetect)
I Atypical Artifact Detection (ArtDetect)
I Error Correlation (EC)

UQ Methods
I Interval Neural Network (INN):

u INN(x̃) = Φ(x̃)−Φ(x̃)
I Monte Carlo dropout (MCDrop)[1, 3]:

uMCDrop(x̃) = 1
T−1

(∑T
t=1 Φt(x̃)2 − 1

T

(∑T
t=1 Φt(x̃)

)2
)

I Mean and Variance Estimation (ProbOut)[4, 2]:
uProbOut(x̃) = Φvar(x̃)



Experiments II

Figure 2:
Results of
three UQ
methods for
the
AdvDetect
and
ArtDetect
experiments.
Plotting
windows
slightly
adjusted for
better
contrast.



Experiments III

Table 1: Mean test results (± standard deviation) averaged over three
experimental runs. Pearson correlation coefficients for the Adversarial
Artifact Detection and Atypical Artifact Detection experiments and
PWCC with MSE for the EC experiment.

AdvDetect ArtDetect EC
UQ Method CT Denoise CT Denoise PWCC MSE

INN 0.56± 0.05 0.77± 0.008 0.52± 0.03 0.69± 0.006 2211± 403 7.4± 0.65× 10−4

MCDrop 0.28± 0.02 0.20± 0.001 0.26± 0.01 0.44± 0.02 2170± 513 7.4± 0.65× 10−4

ProbOut 0.48± 0.12 0.81± 0.002 0.34± 0.04 0.44± 0.01 190± 28 6.7± 2× 10−3



Musings

+ The advertisements above
- Dealing with INN activation functions other than ReLU
- How can we incorporate batch normalization in the INN?
? Beyond inverse problems: classification
? Deeper probabilistic interpretation of INNs beyond ELBO and
the approximate posterior 2

? Application of INNs in DNN compression
deeper understanding of what uncertainties are capable and not
capable of in DL -> that is exactly what motivated us to start,
applications in DNN compression

2See Appendix D
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